师资
方小虎博士,于2015年获得香港中文大学博士学位,2015-2016年于香港中文大学任博士后研究员,2017-2019年于加拿大滑铁卢大学任博士后研究员,2021年9月加入南方科技大学深港微电子学院。方小虎博士长期从事射频集成电路,射频前端电路,微波与毫米波高性能无线发射机方面的研究,在研发宽带,高效率,低成本,可复用的4G和5G无线射频前端电路上取得了一系列优异成果,总计发表论文30余篇,其中以第一作者或通讯作者身份发表的SCI论文15余篇。现为IEEE高级会员、担任IEEE TMTT、IEEE MWCL、IEEE TCAS-I 和 TCAS-II、MTT-S IMS等知名期刊和会议的审稿人。
教育经历:
2015年,香港中文大学,博士学位
2011年,华中科技大学,硕士学位
2008年,华中科技大学,学士学位
工作经历:
2021年9月至今,南方科技大学,助理教授
2017至2019年,滑铁卢大学,博士后研究员
2015至2016年,香港中文大学,博士后研究员
研究简介:
微波与毫米波射频前端设计
高能效发射机及其线性化技术
宽带和高效率射频功率放大器
所获荣誉:
孔雀计划——C类人才
香港研究生奖学金, 2011-2014
代表文章:
[J01] Xiaohu Fang, Wenqi Dai, Jie Shi, "A Linear and Wideband GaN MMIC Distributed Efficient Power Amplifier Design Using Unequal Power Splitting and Bandpass Unit Network," IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2024.3480451(Early Access). 2024
[J02] X. Fang*, R. Chen and J. Shi, "Switchless Class-G Power Amplifiers: Generic Theory and Design Methodology Using Packaged Transistors," IEEE Trans. Microw. Theory Techn., vol. 72, no. 8, pp. 4625-4637, Aug. 2024.
[J03] X. Fang*, J. Shi, C. Wei, Y. Duan, P. Li and Z. Wang, "A Linear Millimeter-Wave GaN MMIC Doherty Power Amplifier With Improved AM-AM and AM-PM Characteristics," IEEE Trans. Microw. Theory Techn., vol. 72, no. 8, pp. 4597-4610, Aug. 2024.
[J04] J. Shi, X. Fang*, C. Wei, T. Lin, L. Zhao and K. -K. M. Cheng, "Design of a Highly Efficient Class-F GaN MMIC Power Amplifier Using a Multi-Function Bias Network and a Harmonic-Isolation L-C Resonator," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 12, pp. 5208-5219, Dec. 2023.
[J05] J. Shi, X. Fang*, H. Yu, J. Sui and K. -K. M. Cheng, “Novel Wideband Millimeter-wave GaN Power Amplifier Design using Transistors with Large Drain Capacitance and High Optimum Load Impedance,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 12, pp. 4309-4313, Dec. 2023.
[J06] J. Shi, W. Dai, X. Fang*, X Zhou, J Sui, J Xia, K Cheng, “Novel Wideband Fully Integrated GaN Power Amplifier Design Using a Hybrid Bandpass-Lowpass Output Matching Network,” IEEE Microwave and Wireless Technology Letters, vol. 33, no. 8, pp. 1187-1190, Aug. 2023.
[J07] X. Fang, J. Xia*, and S. Boumaiza, “A 28-GHz beamforming Doherty power amplifier with enhanced AM-PM characteristic,” IEEE Trans. Microw. Theory Techn. vol. 68, no. 7, 3017-3027, Jun. 2020.
[J08] J. Xia, X. Fang*, and S. Boumaiza, “Millimeter wave SOI-CMOS power amplifier with enhanced AM-PM characteristic,” IEEE Access, vol. 8, pp. 8861-8875, 2020.
[J9] M. Liu, X. Fang*, and S. Boumaiza, “Dual band 3-way Doherty amplifier with extended back-off power range and bandwidth,” IEEE Trans Circuits Syst. II, Exp. Brief., vol. 67, no. 2, 270-274, Feb. 2020.
[J10] Y. Li, X. Fang*, A. Jund, H. Huang and S. Boumaiza, “Two-port network theory based design method for broadband Class J Doherty amplifiers,” IEEE Access., vol. 7, pp. 51028-51038, 2019.
[J11] X. Fang*, A. Cheng and S. Boumaiza, “Linearity enhanced Doherty power amplifier using output combining network with pre-defined AM-PM characteristic,” IEEE Trans. Microw. Theory Techn. vol. 67, no. 1, 195-204, Jan. 2019.
[J12] X. Fang*, H. Liu, K. M. Cheng, S. Boumaiza, “Modified Doherty amplifier with extended bandwidth and back-off power range using optimized combining currents,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, 5347-5357, Dec. 2018.
[J13] X. Fang*, H. Liu, K. M. Cheng, S. Boumaiza, “Two-way Doherty power amplifier efficiency enhancement by incorporating transistors’ nonlinear phase distortion,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 2, pp. 168–170, Feb 2018.
[J14] X. Fang*, H. Liu, K. M. Cheng, “Extended Efficiency Range, Equal-cell Doherty Amplifier Design Using Explicit Circuit Model,” IEEE Microw. Wireless Compon. Lett. vol. 27, no. 5, pp. 497–499, May 2017.
[J15] X. Fang*, K. M. Cheng, “Improving power utilization factor of broadband Doherty amplifier by using band-pass auxiliary transformer,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 9, 2811-2820, Sep. 2015.
[J16] X. Fang*, K. M. Cheng, “Extension of high-efficiency range of Doherty amplifier by using complex combining load,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 9, pp. 2038–2047, Sep. 2014.
SCI(共同作者):
[J17] J. Xie, K. -K. M. Cheng, X. Fang and P. Yu, "Extension of Output Backoff Range in Three-Stage Load Modulated Balanced Amplifier Using Asymmetric Coupling and Non-Z0 Load," IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2024.3425168.
[J18] J. Xie, K. -K. M. Cheng, P. Yu and X. Fang, "Dual-Band Pseudo-Doherty Load Modulated Balanced Amplifier Design With Arbitrarily Selected Frequency Bands," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 8, pp. 3665-3669, Aug. 2024
[J19] X. Y. Zhou, W. S. Chan, W. Feng, X. Fang, T. Sharma and S. Chen, “Broadband Doherty Power Amplifier Based on Coupled Phase Compensation Network,” IEEE Trans. Microw. Theory Techn, vol. 70, no. 1, pp. 210-221, Jan. 2022.
[J20] Liu*, K. M. Cheng, C. Zhai and X. Fang, “Peak-Current-Ratio enhanced compact symmetrical Doherty amplifier design by using active harmonic control”, IEEE Trans. Microw. Theory Techn., vol. 69, no. 6, pp. 3158–3170, Jun. 2021.
[J21] H. Liu*, X. Fang and K. M. Cheng, “Bandwidth Enhancement of Frequency Dispersive Doherty Power Amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 2, 185-188, Feb. 2020.
[J22] J. Xia*, X. Fang, and S. Boumaiza, “60-GHz Power Amplifier in 45-nm SOI-CMOS Using Stacked Transformer-Based Parallel Power Combiner,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 8, 711-713, Aug. 2018.
[J23] X. Zhou*, S. Zheng, W. Chan, X. Fang and D. Ho, “Post-matching Doherty power amplifier with extended back-off range based on self-generated harmonic injection”, IEEE Trans. Microw. Theory Techn., vol. 66, no. 4, 1951-1963, Apr. 2018.
会议论文:
[24] X. Yu, X. Fang*, J. Shi, G. Lv, C. Wei, J. Sui, “Deep Neural Network based Stable Digital Predistortion using ELU Acti-vation for Switchless Class-G Power Amplifier,” 2024 IEEE MTT-S International Wireless Symposium (IWS), Beijing, China.
[25] J. Shi, X. Fang*, Q. Zhang, H. Yu, H. Wang, “Theoretical Analysis and Experimental Validation of Enhancing Doherty Amplifier Gain via Asymmetrical Input Power Splitting,” 2024 IEEE MTT-S International Wireless Symposium (IWS), Beijing, China.
[26] J. Shi, X. Fang*, X. Zhou, X. Yan, W. Lin and L. Zhao, "A GaN MMIC Inverse Class-F Power Amplifier Using Co-Designed Bias Network and LC Resonator," 2024 15th Global Symposium on Millimeter-Waves & Terahertz (GSMM), Hong Kong, 2024, pp. 153-155
[27] W. Huang, X. Fang*, W. Lin, G. Huang, X. Wang and L. Zhao, "A Wideband Millimeter-Wave GaN Low-Noise Amplifier Using Multi-Stage Feedback Compensation," 2023 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chengdu, China, 2023, pp. 1-3
[28] B. Wei, J. Shi, X. Fang*, X. Zhou, Q. Wang and H. Yu, "Stability and Efficiency Enhancement of a C-band Class-F Power Amplifier Using a Coupling Compensation Method," 2022 IEEE Conference on Antenna Measurements and Applications (CAMA), Guangzhou, China, 2022, pp. 1-4.
[29] J. Shi, X. Fang*, J. Sui, X. Zhou, H. Yu and H. Yu, "A Linear Envelope Tracking Power Amplifier with Varactor-based Phase Compensation Network," 2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (IWEM), Guangzhou, China, 2021, pp. 1-3.
[30] J. Sui, X. Fang and Z. Luo, "A Four-Element 5G MIMO Antenna Design for Mobile Terminals Using Self-Curing Decoupling Technique," 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Shenzhen, China, 2021, pp. 117-119.
[31] J. Shi, X. Fang* and X. Zhou, "A New Method to Design Highly Efficient C-band Harmonic-tuned Power Amplifiers," 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Shenzhen, China, 2021, pp. 154-156.
[32] X. Y. Zhou, W. S. Chan, W. J. Feng, X. Fang, T. Sharmar, and Z. Liu, “Bandwidth enhanced Doherty power amplifier based on coupled phase compensation network with specific optimal impedance,” IEEE MTT-S International Wireless Symposium (IWS 2020), Shanghai, China., 2020, pp. 1-3.
[33] X. Fang*, H. Golestaneh and S. Boumaiza, “Broadband and linearity enhanced Doherty power amplifier using complex-valued Load Modulation”, IEEE MTT-S 2018 Int. Microw. Symp. Dig., USA, Jun., 2018.
[34] H. Liu*, X. Fang and K. M. Cheng, “Built-in AM/AM and AM/PM distortion study of generalized symmetrical Doherty amplifier”, Proc. European Microwave Conference, pp. 148–151, Oct. 2017
[35] X. Fang* and K. M. Cheng, "Broadband, wide efficiency range, Doherty amplifier design using frequency-varying complex combining load", IEEE MTT-S 2015 Int. Microw. Symp. Dig., USA, May, 2015.
[36] X. Fang, G. Wu*, W. Li, Y. Zhai, "A lumped-element analog predistorter for VHF application", IEEE Int. Symp. on Signals Systems and Electronics, Nanjing, China, Sep. 2010.