师资
基本信息
姓名:孔良
职称:研究员
邮 箱:kongl@sustc.edu.cn
研究领域:数学物理 (拓扑量子场论、2维共形场论、范畴学、表示论、拓扑物质态)
教育背景
2005.10 博士(数学)Rutgers, the State University of New Jersey
1997.5 硕士(物理学)美国休斯顿大学
1994.7 学士(物理学)中国科学技术大学
工作经历
2018.9- 至今 深圳量子科学与工程研究院,南方科技大学
2017.9-2018.8 北京清华大学丘成桐数学科学中心 (副教授)
2015.7-2016.6 美国哈佛大学数学科学中心 (Research Associate)
2012.9-2017.5 美国University of New Hampshire (讲师)
2009.9--2015.7 北京清华大学高等研究院:副研究员
2005.9--2009.8 德国马普数学研究所(莱比锡、波恩)、法国高等研究院(IHES), 美国加州理工学院 (博士后)
论文与专利
1. Open-string vertex algebras, categories and operads, Yi-Zhi Huang, Liang Kong, Comm. Math. Phys. 250 (2004) 433–471, [arXiv:math/0308248]
2. Full field algebras, Yi-Zhi Huang, Liang Kong, Comm. Math. Phys. 272 (2007) 345–396, [arXiv:math/0511328]
3. Full field algebras, operads and tensor categories, Liang Kong, Adv. Math. 213 (2007) 271–340, [arXiv:math/0603065]
4. Modular invariance for conformal full field algebras, Yi-Zhi Huang, Liang Kong, Trans. Amer. Math. Soc. 362 (2010) 3027–3067, [arXiv:math.QA/0609570]
5. Open-closed field algebras, Liang Kong, Comm. Math. Phys., 280, 207-261 (2008) [arXiv:math.QA/0610293]
6. Cardy condition for open-closed field algebras, Liang Kong, Comm. Math. Phys. 283, 25–92 (2008) [arXiv:math/0612255]
7. Morita classes of algebras in modular tensor categories, Liang Kong, Ingo Runkel, Adv. Math. 219, 1548–1576 (2008) [arXiv:0708.1897]
8. Cardy algebras and sewing constraints, I, Liang Kong, Ingo Runkel, Comm. Math. Phys. 292, 871–912 (2009) [arXiv:0807.3356]
9. Algebraic structures in Euclidean and Minkowskian two-dimensional conformal field theory, Liang Kong, Ingo Runkel, Noncommutative structures in Mathematics and Physics, 217–238, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2010, [arXiv:0902.3829]
10. Field theories with defects and the centre functor, Alexei Davydov, Liang Kong, Ingo Runkel, Mathematical Foundations of Quantum Field and Perturbative String Theory, Hisham Sati, Urs Schreiber (eds.), Proceedings of Symposia in Pure Mathematics, AMS Vol. 83 (2011) 71–128 [arXiv:1107.0495]
11. Conformal field theory and a new geometry, Liang Kong, Mathematical Foundations of Quantum Field and Perturbative String Theory, Hisham Sati, Urs Schreiber (eds.), Proceedings of Symposia in Pure Mathematics, AMS, Vol. 83 (2011) 199–244 [arXiv:1107.3649]
12. Invertible defects and isomorphisms of rational CFTs, Alexei Davydov, Liang Kong, Ingo Runkel, Adv. Theor. Math. Phys., 15, (2011) 43–69 [arXiv:1004.4725]
13. Models for gapped boundaries and domain walls, Alexei Kitaev, Liang Kong, Comm. Math. Phys. 313 (2012) 351-373 [arXiv:1104.5047]
14. Electric-magnetic duality and topological order on the lattice, Oliver Buerschaper, Matthias Christandl, Liang Kong, Miguel Aguado, Nuclear Physics B. 876 [FS] (2013) 619-636 [arXiv:1006.5823]
15. Some universal properties of Levin-Wen models, Liang Kong, XVIITH International Congress of Mathematical Physics, World Scientific 444-455 (2014) [arXiv:1211.4644]
16. Cardy algebras and sewing constraints, II, Liang Kong, Qin Li, Ingo Runkel, Adv. Math. 262 (2014) 604-681 [arXiv:1310.1875]
17. Anyon condensation and tensor categories, Liang Kong, Nucl. Phys. B 886 (2014)436-482 [arXiv:1307.8244]
18. The functoriality of the centre of an algebra, Alexei Davydov, Liang Kong, Ingo Runkel, Adv. Math. 285 (2015) 811-876 [arXiv:1307.5956]
19. Modular extensions of unitary braided fusion categories and 2+1D topological/SPT orders with symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Comm. Math. Phys. 351 (2017) 709-739 [arXiv:1602.05936]
20. A theory of 2+1D fermionic topological orders and fermionic/bosonic topological orders with symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. B 94, 155113 (2016) [arXiv:1602.05936]
21. Classification of 2+1D topological orders and SPT orders for bosonic and fermionic systems with on-site symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. B 95, 235140 (2017) [arXiv:1602.05936]
22. Boundary-bulk relation in topological orders, Liang Kong, Xiao-Gang Wen, Hao Zheng, Nucl. Phys. B 922 (2017), 62-76 [arXiv:1702.00673]
23. Drinfeld center of enriched monoidal categories, Liang Kong, Hao Zheng, Adv. Math. 323 (2018) 411-426 [arXiv:1704.01447]
24. Gapless edges of 2d topological orders and enriched monoidal categories, Liang Kong, Hao Zheng, Nucl. Phys. B 927 (2018) 140-165 [arXiv:1705.01087]
25. Topological orders and factorization homology, Yinghua Ai, Liang Kong, Hao Zheng, Adv. Theor. Math. Phys. Vol. 21, Number 8, (2017) 1845-1894 [arXiv:1607.08422]
26. A classification of 3+1D bosonic topological orders (I): the case when point-like excitations are all bosons, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. X 8, 021074, (2018) [arXiv:1704.04221]
27. The center functor is fully faithful, Liang Kong, Hao Zheng, accepted by Adv. Math. [arXiv:1507.00503]