Faculty

中文       Go Back       Search
TAO lizhi
Associatet Professor
taolz@sustech.edu.cn

   Dr. Lizhi Tao studied material science and engineering at Jilin University in Changchun, China, graduating with a B.S. degree in 2007. She then pursued her graduate studies at Tsinghua University in Beijing, where she worked with Professor Bo-Qing Xu in the field of physical chemistry, focusing on acid-base heterogeneous catalysis. She earned her Master of Science degree in 2011. Motivated by understanding the perfect designed catalysis of natural enzymes, she enrolled at the University of California, Davis, in 2012 to pursue her Ph.D. There, she worked with Professors R. David Britt and William H. Casey, focusing on using advanced Electron Paramagnetic Resonance (EPR) spectroscopy to study the catalytic mechanisms of multi-copper oxidase MnxG. After receiving her Ph.D. in 2016, she chose to continue her work in the Britt lab as a postdoctoral fellow. During her postdoctoral studies, she expanded her research systems to multi-disciplinary areas, including biological systems, inorganic synthesized clusters and compounds, as well as solid metal-oxide catalysis systems. She employed advanced pulse EPR spectroscopy techniques—such as ESEEM, HYSCORE, ENDOR, and DEER—to investigate diverse chemical reaction systems. Her research aims to achieve a fundamental molecular-level understanding of the structure-function/reactivity relationship via characterizing key reaction intermediates and fascinating catalytic active sites.

  She has published more than 50 research journal articles, including J. Am. Chem. Soc., Nature Chem., Nature Rev. Chem., etc. In 2021, she received the Oversea High-level Investigator award. In July 2022, she joined the Department of Chemistry at the Southern University of Science and Technology (SUSTech) as an associate professor.  

 

Research:

1. Advanced Electron Paramagnetic Resonance (EPR) Spectroscopy

2. Probing reaction mechanisms of metalloenzymes

3. Mechanistic study of organometallic and surface heterogeneous catalysis

4. Exploring novel enzymes with currently unknown functions in Nature

 

 

Publications

[53] B. Ma, Y.-H. Lee, M. W. Ruszczycky, D. Ren, A. Engstrom, H.-w. Liu*, and L. Tao*, “EPR characterization of the BlsE substrate radical offers insight into the determinants of reaction outcome that distinguish radical SAM dioldehydratases from dehydrogenases”, J. Am. Chem. Soc., 2025, 147, 4111-4119.

[52] B. Ma, R. D. Britt, and L. Tao*, “Radical SAM enzyme PylB generates a lysyl radical intermediate in the biosynthesis of pyrrolysine by using SAM as a cofactor”, J. Am. Chem. Soc., 2024, 146, 6544-6556.

[51] Y. Li, T. Yu, X. Feng, B. Zhao, H. Chen, H. Yang, X. Chen, X.-H. Zhang, H. R. Anderson, N. Z. Burns, F. Zeng*, L. Tao*, and Z. Zeng*, “Biosynthesis of GMGT lipids by a radical SAM enzyme associated with anaerobic archaea and oxygen-deficient environments”, Nat. Commun., 2024, 15, 5256.

[50] W. Fu, F. P. Hyler, J. Sanchez, T. F. Jaramillo, J. M. Velázquez, L. Tao*, and R. D. Britt*, “Biogenic manganese oxide synthesized by a marine bacterial multicopper oxidase MnxG reveals oxygen evolution activity,” ACS Catal., 2024, 14, 7232-7242.

[49] K. Han, H. Liu, M. E. Rotella, Z. Xu, L. Tao, S. Chen*, M. C. Kozlowski*, and T. Jia*, “A combined experimental and computational study of ligand-controlled Chan-Lam coupling of sulfenamides”, Nat. Commun., 2024, 15, 4747.

[48] D. Xu, M.-Y. Jin, Y. Chen, D. Han, L. Tao, and X. Xing*, “Indium-catalyzed reductive coupling enabled efficient synthesis of acylphosphine oxides and diphosphines”, ACS Catal., 2024, 14, 3241-3247.

[47] Y. Mei, X. Chen, R. Wei, X.-Y. Chang, L. Tao, and L. L. Liu*, “An isolable radical anion featuring a 2-center-3-electron π-bond without a clearly defined σ-bond”, Angew. Chem. Int. Ed., 2023, 62, e202315555.

[46] T. Xue, Y.-S. Ding, X.-L. Jiang, L. Tao, J. Li*, and Z. Zheng*, “Tetravalent terbium chelates: stability enhancement and property tuning”, Precis. Chem., 2023, 1, 583-591.

[45] D. G. Villarreal, G. Rao, L. Tao, L. Liu, T. B. Rauchfuss, and R. D. Britt*, “Characterizing the biosynthesis of the [Fe(II)(CN)(CO)2(cysteinate)]-organometallic product of the radical-SAM enzyme HydG by EPR and Mössbauer spectroscopy”, J. Phys. Chem. B, 2023, 127, 9295-9302.

[44] C. P. Delaney, E. Lin, Q. Huang, I. F. Yu, G. Rao, L. Tao, A. Jed, S. M. Fantasia, K. A. Püntener, R. D. Britt, and J. F. Hartwig*, “Cross-coupling by a noncanonical mechanism involving the addition of aryl halide to Cu(II)”, Science, 2023, 381, 1079-1085.

[43] A. Singha, A. Sekretareva, L. Tao, H. Lim, Y. Ha, A. Braun, S. M. Jones, B. Hedman, K. O. Hodgson, R. D. Britt, D. J. Kosman*, and E. I. Solomon*, “Tuning the type 1 reduction potential of multicopper oxidases: Uncoupling the effects of electrostatics and H-bonding to histidine ligands”, J. Am. Chem. Soc, 2023, 145, 13284-13301.

 

Prior to SUSTech

First, co-first and corresponding authored publications

[42] Y. Zhang#, L. Tao# (co-first author), T. Woods, R. D. Britt*, and T. B. Rauchfuss*, “Organometallic Fe2(μ-SH)2(CO)4(CN)2 cluster allows the biosynthesis of the [FeFe]-hydrogenase with only the HydF maturase”, J. Am. Chem. Soc., 2022, 144, 1534-1538.

[41] R. D. Britt*, G. Rao*, and L. Tao*, “Bioassembly of complex iron–sulfur enzymes: hydrogenases and nitrogenases”, Nat. Rev. Chem., 2020, 4, 542-549.

[40] L. Tao, S. A. Pattenaude, S. Joshi, T. P. Begley, T. B. Rauchfuss, and R. D. Britt*, “The radical SAM enzyme HydE generates adenosylated Fe(I) intermediates en route to the [FeFe]-hydrogenase catalytic H-cluster”, J. Am. Chem. Soc., 2020, 142, 10841-10848.

[39] L. Tao, W. Zhu, J. P. Klinman*, and R. D. Britt*, “Electron paramagnetic resonance spectroscopic identification of the Fe–S clusters in the SPASM domain-containing radical SAM enzyme PqqE”, Biochemistry, 2019, 58, 5173-5187.

[38] L. Tao, T. Y. Lai, P. P. Power*, and R. D. Britt*, “Germanium hydride radical trapped during the photolysis/thermolysis of diarylgermylene”, Inorg. Chem., 2019, 58, 15034-15038.

[37] L. Tao, T. A. Stich, C. J. Fugate, J. T. Jarrett, and R. D. Britt*, “EPR-derived structure of a paramagnetic intermediate generated by biotin synthase BioB”, J. Am. Chem. Soc., 2018, 140, 12947-12963.

[36] L. Tao#, A. N. Simonov#, C. A. Romano, C. N. Butterfield, B. M. Tebo, A. M. Bond, L. Spiccia*, L. L. Martin*, and W. H. Casey*, “Probing electron transfer in the manganese-oxide-forming MnxEFG protein complex using Fourier transformed AC voltammetry: understanding the oxidative priming effect”, ChemElectroChem., 2018, 5, 872-876.

[35] L. Tao, A. V. Soldatova, B. M. Tebo, T. G. Spiro, W. H. Casey, and R. D. Britt*, “Mn(III) species formed by the multi-copper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy”, J. Biol. Inorg. Chem., 2018, 23, 1093-1104.

[34] L. Tao, T. A. Stich, S.-H. Liou, A. V. Soldatova, D. A. Delgadillo, C. A. Romano, T. G. Spiro, D. B. Goodin, B. M. Tebo, W. H. Casey, and R. D. Britt*, “Copper binding sites in the manganese-oxidizing Mnx protein complex investigated by electron paramagnetic resonance spectroscopy”, J. Am. Chem. Soc., 2017, 139, 8868-8877.

[33] L. Tao#, A. N. Simonov#, C. A. Romano, C. N. Butterfield, M. Fekete, B. M. Tebo, A. M. Bond, L. Spiccia*, L. L. Martin*, and W. H. Casey*, “Biogenic manganese-oxide mineralization enhanced by oxidative priming of the MnxEFG protein complex”, Chem. Eur. J, 2016, 23, 1346-1352.

[32] L. Tao, T. A. Stich, C. N. Butterfield, C. A. Romano, T. G. Spiro, B. M. Tebo, W. H. Casey, and R. D. Britt*, “Mn(II) binding and subsequent oxidation by the multicopper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy”, J. Am. Chem. Soc., 2015, 137, 10563-10575. 

[31] L. Tao, T. A. Stich, H. Jaccard, R. D. Britt, and W. H. Casey*, “Manganese-oxide solids as water-oxidation electrocatalysts: the effect of intercalating cations”, ACS Symp. Ser., 2015, 1197, 135-153.

[30] L. Tao, S.-H. Chai, P. Wang, Y. Liang, and B.-Q. Xu*, “Comparison of gas-phase dehydration of propane polyols over solid acid–base catalysts”, Catal. Today, 2014, 234, 237-244.

[29] L. Tao, B. Yan, Y. Liang, and B.-Q. Xu*, “Sustainable production of acrolein: catalytic performance of hydrated tantalum oxides for gas-phase dehydration of glycerol”, Green Chem., 2013, 15, 696-705.

[28] L. Tao, S.-H. Chai, Y. Zuo, W.-T. Zheng, Y. Liang, and B.-Q. Xu*, “Sustainable production of acrolein: acidic binary metal oxide catalysts for gas-phase dehydration of glycerol”, Catal. Today, 2010, 158, 310-316.

 

Coauthored publications

[27] A. R. Balo, L. Tao, and R. D. Britt*, “Characterizing SPASM/twitch domain-containing radical SAM enzymes by EPR spectroscopy”, Appl. Magn. Reson., 2022, 53, 809-820.

[26] T. J. Sherbow, W. Fu, L. Tao, L. N. Zakharov, R. D. Britt, and M. D. Pluth*, “Thionitrite (SNO) and perthionitrite (SSNO) are simple synthons for nitrosylated iron sulfur clusters”, Angew. Chem. Int. Ed., 2022, 61, e202204570.

[25] J. B. Patteson, A. T. Putz, L. Tao, W. C. Simke, L. H. Bryant III, R. D. Britt, and B. Li*, “Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa”, Science, 2021, 374, 1005-1009.

[24] R. D. Britt*, L. Tao, G. Rao, N. Chen, and L.-P. Wang, “Proposed mechanism for the biosynthesis of the [FeFe]-hydrogenase H-cluster: central roles for the radical SAM enzymes HydG and HydE”, ACS Bio. Med. Chem. Au, 2021, 2, 11-21.

[23] A. R. Balo, A. Caruso, L. Tao, D. J. Tantillo, M. R. Seyedsayamdost*, and R. D. Britt*, “Trapping a cross-linked lysine–tryptophan radical in the catalytic cycle of the radical SAM enzyme SuiB”, Proc. Natl. Acad. Sci. U.S.A., 2021, 118, e2101571118.

[22] R. Rohac, L. Martin, Liang Liu, D. Basu, L. Tao, R. D. Britt*, T. B. Rauchfuss*, and Y. Nicolet*, “Crystal structure of the [FeFe]-hydrogenase maturase HydE bound to complex-B”, J. Am. Chem. Soc., 2021, 143, 8499-8508.

[21] W. Zhu, L. M. Walker, L. Tao, A. T. Iavarone, X. Wei, R. D. Britt, S. J. Elliott*, and J. P. Klinman*, “Structural properties and catalytic implications of the SPASM domain iron–sulfur clusters in Methylorubrum extorquens PqqE”, J. Am. Chem. Soc., 2020, 142, 12620-12634.

[20] R. D. Britt*, G. Rao, and L. Tao, “Biosynthesis of the catalytic H-cluster of [FeFe] Hydrogenase: the roles of the Fe-S maturase proteins HydE, HydF, and HydG”, Chem. Sci., 2020, 11, 10313-10323.

[19] G. Rao, L. Tao, and R. D. Britt*, “Serine is the molecular source of the NH(CH2)2 bridgehead moiety of the in vitro assembled [FeFe] hydrogenase H-cluster”, Chem. Sci., 2020, 11, 1241-1247.

[18] K. M. Schilling, L. Tao, B. Wu, J. T. M. Kiblen, N. C. Ubilla-Rodriguez, M. J. Pushie, R. D. Britt, G. P. Roseman, D. A. Harris*, and G. L. Millhauser*, “Both N-terminal and C-terminal histidine residues of the prion protein are essential for copper coordination and neuroprotective self-regulation”, J. Mol. Biol., 2020, 432, 4408-4425.

[17] M. J. Stevenson, S. E. Janisse, L. Tao, R. L. Neil, Q. D. Pham, R. D. Britt, and M. C. Heffern*, “Elucidation of a copper binding site in proinsulin C-peptide and its implications for metal-modulated activity”, Inorg. Chem., 2020, 59, 9339-9349.

[16] F. Li, A. Thevenon, A. R.-Hernández, …, L. Tao, … R. D. Britt, D. Sinton, T. Agapie*, J. C. Peters*, E. H. Sargent*, et al., “Molecular tuning of CO2-to-ethylene conversion”, Nature, 2019, 577, 509-513.

[15] T. Y. Lai, L. Tao, R. D. Britt, and P. P. Power*, Reversible Sn–Sn triple bond dissociation in a distannyne: support for charge-shift bonding character”, J. Am. Chem. Soc., 2019, 141, 12527-12530.

[14] C. L. Wagner, L. Tao, J. C. Fettinger, R. D. Britt, and P. P. Power*, “Two-coordinate, late first-row transition metal amido derivatives of the bulky ligand -N(SiPri3)Dipp (Dipp = 2,6-diisopropylphenyl): effects of the ligand on the stability of two-coordinate copper(II) complexes”, Inorg. Chem., 2019, 58, 8793-8799.

[13] G. Rao, A. B. Altman, A. C. Brown, L. Tao, T. A. Stich, J. Arnold*, and R. D. Britt*, “Metal bonding with 3d and 6d orbitals: an EPR and ENDOR spectroscopic investigation of Ti3+–Al and Th3+–Al heterobimetallic complexes”, Inorg. Chem., 2019, 58, 7978-7988.

[12] G. Rao, L. Tao, D. L. M. Suess, and R. D. Britt*, “A [4Fe–4S]-Fe(CO)(CN)-L-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly”, Nat. Chem., 2018, 10, 555-560.

[11] A. V. Soldatova, L. Tao, C. A. Romano, T. A. Stich, W. H. Casey, R. D. Britt, B. M. Tebo, and T. G. Spiro*, “Mn(II) oxidation by the multicopper oxidase complex Mnx: a binuclear activation mechanism”, J. Am. Chem. Soc., 2017, 139, 11369-11380.

[10] A. V. Soldatova, C. A. Romano, L. Tao, T. A. Stich, W. H. Casey, R. D. Britt, B. M. Tebo, and T. G. Spiro*, “Mn(II) oxidation by the multicopper oxidase complex Mnx: a coordinated two-stage Mn(II)/(III) and Mn(III)/(IV) mechanism”, J. Am. Chem. Soc., 2017, 139, 11381-11391.

[9] S. Wang, L. Tao, T. A. Stich, M. M. Olmstead, R. D. Britt, and P. P. Power*, “Insertion of a transient tin nitride into carbon–carbon and boron–carbon bonds”, Inorg. Chem., 2017, 56, 14596-14604.

[8] A. N. Simonov*, R. K. Hocking, L. Tao, T. Gengenbach, T. Williams, X.Y. Fang, H. J. King, S. A. Bonke, D. A. Hoogeveen, C. A. Romano, B. M. Tebo, L. L. Martin, W. H. Casey*, and L. Spiccia, Tunable biogenic manganese oxides”, Chem. Eur. J, 2017, 23, 13482-13492.

[7] B. Yan, L. Tao, Y. Liang, and B.-Q. Xu*, “Potassium-ion-exchanged zeolites for sustainable production of acrylic acid by gas-phase dehydration of lactic acid”, ACS Catal., 2017, 7, 538-550.

[6] C. L. Wagner, L. Tao, E. J. Thompson, T. A. Stich, J. Guo, J. C. Fettinger, L. A. Berben, R. D. Britt, S. Nagase, and P. P. Power*, “Dispersion-force-assisted disproportionation: a stable two-coordinate copper(II) complex”, Angew. Chem. Int. Ed., 2016, 55, 10444-10447.

[5] C. N. Butterfield, L. Tao, K. N. Chacóna, T. G. Spiro, N. J. Blackburn, W. H. Casey, R. D. Britt, and B. M. Tebo*, “Multicopper manganese oxidase accessory proteins bind Cu and Heme”, Biochim. Biophys. Acta, 2015, 1854, 1853-1859.

[4] B. Yan, L. Tao, Y. Liang, and B.-Q. Xu*, “Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid”, ChemSusChem, 2014, 7, 1568-1578.

[3] B. Yan, L. Tao, Y. Liang, and B.-Q. Xu*, “Sustainable production of acrylic acid: catalytic performance of hydroxyapatites for gas-phase dehydration of lactic Acid”, ACS Catal., 2014, 4, 1931-1943.

[2] S.-H. Chai, L. Tao, B. Yan, J. C. Vedrine, Y. Liang, and B.-Q. Xu*, “Sustainable production of acrolein: effects of reaction variables, modifiers doping and ZrOorigin on the performance of WO3/ZrO2 catalyst for the gas-phase dehydration of glycerol”, RSC Adv., 2014, 4, 4619-4630.

[1] S.-H. Chai, B. Yan, L. Tao, Y. Liang, and B.-Q. Xu*, “Sustainable production of acrolein: catalytic gas-phase dehydration of glycerol over dispersed tungsten oxides on alumina, zirconia and silica”, Catal. Today, 2014, 234, 215-222.